Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.773
Filtrar
1.
J Am Chem Soc ; 146(11): 7313-7323, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452252

RESUMO

DUF692 multinuclear iron oxygenases (MNIOs) are an emerging family of tailoring enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Three members, MbnB, TglH, and ChrH, have been characterized to date and shown to catalyze unusual and complex transformations. Using a co-occurrence-based bioinformatic search strategy, we recently generated a sequence similarity network of MNIO-RiPP operons that encode one or more MNIOs adjacent to a transporter. The network revealed >1000 unique gene clusters, evidence of an unexplored biosynthetic landscape. Herein, we assess an MNIO-RiPP cluster from this network that is encoded in Proteobacteria and Actinobacteria. The cluster, which we have termed mov (for methanobactin-like operon in Vibrio), encodes a 23-residue precursor peptide, two MNIOs, a RiPP recognition element, and a transporter. Using both in vivo and in vitro methods, we show that one MNIO, homologous to MbnB, installs an oxazolone-thioamide at a Thr-Cys dyad in the precursor. Subsequently, the second MNIO catalyzes N-Cα bond cleavage of the penultimate Asn to generate a C-terminally amidated peptide. This transformation expands the reaction scope of the enzyme family, marks the first example of an MNIO-catalyzed modification that does not involve Cys, and sets the stage for future exploration of other MNIO-RiPPs.


Assuntos
Imidazóis , Oligopeptídeos , Oxigenases , Processamento de Proteína Pós-Traducional , Oxigenases/genética , Peptídeos/química , Família Multigênica , Catálise
2.
Int J Biochem Cell Biol ; 169: 106538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320728

RESUMO

Circadian genes play an important role in the field of drug metabolism. Flavin-containing monooxygenase 3 is a well-known phase I enzyme which participates in metabolism of many exogenous and endogenous substances, especially production of trimethylamine N-oxide. Here, we aimed to decipher diurnal rhythms of flavin-containing monooxygenase 3 expression and activity, and explore the regulation mechanism by clock genes. Our results showed that its mRNA and protein exhibited robust diurnal rhythms in mouse liver and cell lines. Consistently, significant alterations were observed for in vitro microsomal N-oxidation rates of procainamide, which kept in line with its protein expression at different time in wild-type and reverse erythroblastosis virus α knockout mice. Further, flavin-containing monooxygenase 3 was negatively regulated by E4 promoter-binding protein 4 in AML12 and Hepa1-6 cells, while it was positively influenced by reverse erythroblastosis virus α and brain and muscle ARNT-like protein-1. Moreover, luciferase reporter assays and electrophoretic mobility shift assays showed E4 promoter-binding protein 4 inhibited the transcription of flavin-containing monooxygenase 3 by binding to a D-box1 element (-1606/-1594 bp), while brain and muscle ARNT-like protein-1 positively activated the transcription via direct binding to three E-boxes (-863/-858 bp, -507/-498 bp, and -115/-104 bp) in this enzyme promoter. Taken together, this study would be helpful to reveal the mechanism of clock-controlled drug metabolism and facilitate the practice of chrono-therapeutics.


Assuntos
Ritmo Circadiano , Oxigenases , Animais , Camundongos , Camundongos Endogâmicos , Oxigenases/genética , Oxigenases/metabolismo , Fígado/metabolismo
3.
Org Lett ; 26(9): 1807-1812, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38393343

RESUMO

We have identified the biosynthetic gene cluster (hvm) for the sterol O-acyltransferase inhibitor helvamide (1) from the genome of Aspergillus rugulosus MST-FP2007. Heterologous expression of hvm in A. nidulans produced a previously unreported analog helvamide B (5). An α-ketoglutarate-dependent oxygenase Hvm1 was shown to catalyze intramolecular cyclization of 1 to yield 5. The biosynthetic branch to the related hancockiamides and helvamides was found to be controlled by the substrate selectivity of monomodular nonribosomal peptide synthetases.


Assuntos
Ácidos Cetoglutáricos , Oxigenases , Oxigenases/genética , Oxigenases/metabolismo , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Ciclização , Família Multigênica , Peptídeo Sintases/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38215804

RESUMO

Flavin-containing monooxygenases (FMOs) are a family of important drug oxygenation enzymes that, in humans, consist of five functional enzymes (FMO1-5) and a pseudogene (FMO6P). The tree shrew is a non-rodent primate-like species that is used in various biomedical studies, but its usefulness in drug metabolism research has not yet been investigated. In this study, tree shrew FMO1-6 cDNAs were isolated and characterized by sequence analysis, tissue expression, and metabolic function. Compared with human FMOs, tree shrew FMOs showed sequence identities of 85-90 % and 81-89 %, respectively, for cDNA and amino acids. Phylogenetic analysis showed that each tree shrew and human FMO were closely clustered. The genomic and genetic structures of the FMO genes were conserved in tree shrews and humans. Among the five tissue types analyzed (lung, heart, kidney, small intestine, and liver), FMO3 and FMO1 mRNAs were most abundant in liver and kidney, respectively. Recombinant tree shrew FMO1-6 proteins expressed in bacterial membranes all mediated benzydamine and trimethylamine N-oxygenations and methyl p-tolyl sulfide S-oxygenation. The selective human FMO3 substrate trimethylamine was predominantly metabolized by tree shrew FMO3. Additionally, tree shrew FMO6 was active toward trimethylamine, as is cynomolgus macaque FMO6, in contrast with the absence of activity of the human FMO6P pseudogene product. Tree shrew FMO1-6, which are orthologous to human FMOs (FMO1-5 and FMO6P) were identified, and tree shrew FMO3 has functional and molecular features generally comparable to those of human FMO3 as the predominant FMO in liver.


Assuntos
Metilaminas , Tupaia , Tupaiidae , Animais , Humanos , Tupaia/genética , Tupaia/metabolismo , Tupaiidae/genética , Tupaiidae/metabolismo , Filogenia , Oxigenases/genética , Oxigenases/metabolismo , Microssomos Hepáticos , Proteínas Recombinantes/metabolismo , DNA Complementar
5.
Drug Metab Pharmacokinet ; 55: 100539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280279

RESUMO

Genetic variants of human flavin-containing monooxygenase 3 (FMO3) were investigated using an updated Japanese population panel containing 54,000 subjects (the previous panel contained 38,000 subjects). One stop codon mutation and six amino acid-substituted FMO3 variants were newly identified in the updated databank. Of these, two substituted variants (p.Thr329Ala and p.Arg492Trp) were previously identified in compound haplotypes with p.[(Glu158Lys; Glu308Gly)] and were associated with the metabolic disorder trimethylaminuria. Three recombinant FMO3 protein variants (p.Ser137Leu, p.Ala334Val, and p.Ile426Val) expressed in bacterial membranes had similar activities toward trimethylamine N-oxygenation (∼75-125 %) as wild-type FMO3 (117 min-1); however, the recombinant novel FMO3 variant Phe313Ile showed moderately decreased FMO3 catalytic activity (∼20 % of wild-type). Because of the known deleterious effects of FMO3 C-terminal stop codons, the novel truncated FMO3 Gly184Ter variant was suspected to be inactive. To easily identify the four impaired FMO3 variants (one stop codon mutation and three amino-acid substitutions) in the clinical setting, simple confirmation methods for these FMO3 variants are proposed using polymerase chain reaction/restriction fragment length polymorphism or allele-specific PCR methods. The updated whole-genome sequence data and kinetic analyses revealed that four of the seven single-nucleotide nonsense or missense FMO3 variants had moderately or severely impaired activity toward trimethylamine N-oxygenation.


Assuntos
Metilaminas , Oxigenases , Humanos , Códon de Terminação , Japão , Oxigenases/genética , Oxigenases/metabolismo
6.
Bioresour Technol ; 393: 130098, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040299

RESUMO

Isoprene has numerous industrial applications, including rubber polymer and potential biofuel. Microbial methane-based isoprene production could be a cost-effective and environmentally benign process, owing to a reduced carbon footprint and economical utilization of methane. In this study, Methylococcus capsulatus Bath was engineered to produce isoprene from methane by introducing the exogenous mevalonate (MVA) pathway. Overexpression of MVA pathway enzymes and isoprene synthase from Populus trichocarpa under the control of a phenol-inducible promoter substantially improved isoprene production. M. capsulatus Bath was further engineered using a CRISPR-base editor to disrupt the expression of soluble methane monooxygenase (sMMO), which oxidizes isoprene to cause toxicity. Additionally, optimization of the metabolic flux in the MVA pathway and culture conditions increased isoprene production to 228.1 mg/L, the highest known titer for methanotroph-based isoprene production. The developed methanotroph could facilitate the efficient conversion of methane to isoprene, resulting in the sustainable production of value-added chemicals.


Assuntos
Metano , Methylococcus capsulatus , Metano/metabolismo , Methylococcus capsulatus/genética , Methylococcus capsulatus/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Hemiterpenos/metabolismo , Butadienos/metabolismo
7.
Plant Physiol Biochem ; 206: 108253, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086212

RESUMO

Durian (Durio zibethinus L.), popularly known as the "King of fruits," holds significant economic importance in Southeast Asia, including Thailand. During its ripening process, the phytohormone abscisic acid (ABA) content has been reported to increase. However, a comprehensive understanding of ABA's specific role in durian fruit ripening remains elusive. Furthermore, little is known about the molecular aspects of the carotenoid cleavage pathway in this iconic fruit. Therefore, we performed genome-wide identification of the carotenoid cleavage oxygenase (CCO) family in durian. This family includes the nine-cis-epoxycarotenoid dioxygenases (NCEDs) responsible for ABA production and the carotenoid cleavage dioxygenases exhibiting diverse substrate specificities. Through phylogenetic analysis, we classified 14 CCOs in durian into 8 distinct subfamilies. Notably, each DzCCO subfamily displayed a conserved motif composition. Cis-acting element prediction showed that cis-elements related to plant hormones and environmental stress responses were distributed in the DzCCO promoter. In addition, transcriptome analysis was performed to examine the expression pattern during the fruit development and ripening stages. Interestingly, DzNCED5a, a ripening-associated gene, exhibited the highest expression level at the ripe stage, outperforming other CCOs. Its expression markedly correlated with increased ABA contents during the ripening stages of both the "Monthong" variety and other durian cultivars. Transiently expressed DzNCED5a in Nicotiana benthamiana leaves confirmed its function in ABA biosynthesis. These findings highlight the involvement of DzNCED5a in ABA production and its potential importance in durian fruit ripening. Overall, this study provides insights into the significance of CCOs in durian fruit ripening.


Assuntos
Bombacaceae , Dioxigenases , Bombacaceae/genética , Frutas/metabolismo , Filogenia , Oxigenases/genética , Oxigenases/metabolismo , Dioxigenases/genética , Carotenoides/metabolismo , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Enzyme Microb Technol ; 174: 110381, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134734

RESUMO

Indigo, an economically important dye, could be biosynthesized from indole by catalysis of the styrene monooxygenase StyAB. To enhance indigo biosynthesis, the styAB gene and its transcription regulator gene styS/styR in styrene catabolism were cloned from Pseudomonas putida and coexpressed in Escherichia coli. The presence of the intact regulator gene styS/styR dramatically increased the transcriptional levels of styA and styB by approximately 120-fold in the recombinant strain SRAB2 with coexpression of styS/styR and styAB compared to the control strain ABST with solo expression of styAB. A yield of 67.6 mg/L indigo was detected in strain SRAB2 after 24 h of fermentation with 120 µg/mL indole, which was approximately 14-fold higher than that in the control strain ABST. The maximum yield of indigo was produced from 160 µg/mL indole in fermentation of strain SRAB2. However, the addition of styrene to the media significantly inhibited the transcription of styA and styB and consequent indigo biosynthesis in recombinant E. coli strains. Furthermore, the substitution of indole with tryptophan as the fermentation substrate remarkably boosted indigo production, and the maximal yield of 565.6 mg/L was detected in strain SRAB2 in fermentation with 1.2 mg/mL tryptophan. The results revealed that the regulation of styAB transcription by the two-component regulator StyS/StyR in styrene catabolism in P. putida was effective in E. coli, which provided a new strategy for the development of engineered E. coli strains with the capacity for highly efficient indigo production.


Assuntos
Escherichia coli , Índigo Carmim , Escherichia coli/genética , Escherichia coli/metabolismo , Triptofano , Indóis/metabolismo , Estireno/metabolismo , Oxigenases/genética , Oxigenases/metabolismo
9.
BMC Plant Biol ; 23(1): 640, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082240

RESUMO

Carotenoid cleavage oxygenase (CCO) is an enzyme capable of converting carotenoids into volatile, aromatic compounds and it plays an important role in the production of two significant plant hormones, i.e., abscisic acid (ABA) and strigolactone (SL). The cucumber plant genome has not been mined for genomewide identification of the CCO gene family. In the present study, we conducted a comprehensive genome-wide analysis to identify and thoroughly examine the CCO gene family within the genomic sequence of Cucumis sativus L. A Total of 10 CCO genes were identified and mostly localized in the cytoplasm and chloroplast. The CCO gene is divided into seven subfamilies i.e. 3 NCED, 3 CCD, and 1 CCD-like (CCDL) subfamily according to phylogenetic analysis. Cis-regulatory elements (CREs) analysis revealed the elements associated with growth and development as well as reactions to phytohormonal, biotic, and abiotic stress conditions. CCOs were involved in a variety of physiological and metabolic processes, according to Gene Ontology annotation. Additionally, 10 CCO genes were regulated by 84 miRNA. The CsCCO genes had substantial purifying selection acting upon them, according to the synteny block. In addition, RNAseq analysis indicated that CsCCO genes were expressed in response to phloem transportation and treatment of chitosan oligosaccharides. CsCCD7 and CsNCED2 showed the highest gene expression in response to the exogenous application of chitosan oligosaccharides to improve cold stress in cucumbers. We also found that these genes CsCCD4a and CsCCDL-a showed the highest expression in different plant organs with respect to phloem content. The cucumber CCO gene family was the subject of the first genome-wide report in this study, which may help us better understand cucumber CCO proteins and lay the groundwork for the gene family's future cloning and functional investigations.


Assuntos
Arabidopsis , Quitosana , Cucumis sativus , Cucumis sativus/metabolismo , Arabidopsis/genética , Filogenia , Quitosana/metabolismo , Genoma de Planta , Oxigenases/genética , Reguladores de Crescimento de Plantas , Oligossacarídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Appl Environ Microbiol ; 89(12): e0160123, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38014956

RESUMO

IMPORTANCE: Aerobic methanotrophs play a critical role in the global carbon cycle, particularly in controlling net emissions of methane to the atmosphere. As methane is a much more potent greenhouse gas than carbon dioxide, there is increasing interest in utilizing these microbes to mitigate future climate change by increasing their ability to consume methane. Any such efforts, however, require a detailed understanding of how to manipulate methanotrophic activity. Herein, we show that methanotrophic activity is strongly controlled by MmoD, i.e., MmoD regulates methanotrophy through the post-transcriptional regulation of the soluble methane monooxygenase and controls the ability of methanotrophs to collect copper. Such data are likely to prove quite useful in future strategies to enhance the use of methanotrophs to not only reduce methane emissions but also remove methane from the atmosphere.


Assuntos
Methylosinus trichosporium , Methylosinus trichosporium/genética , Oxigenases/genética , Metano , Cobre
11.
Environ Microbiol Rep ; 15(6): 809-819, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935632

RESUMO

Co-oxidation of a range of alkenes, dienes, and aromatic compounds by whole cells of the isoprene-degrading bacterium Rhodococcus sp. AD45 expressing isoprene monooxygenase was investigated, revealing a relatively broad substrate specificity for this soluble diiron centre monooxygenase. A range of 1-alkynes (C2 -C8 ) were tested as potential inhibitors. Acetylene, a potent inhibitor of the related enzyme soluble methane monooxygenase, had little inhibitory effect, whereas 1-octyne was a potent inhibitor of isoprene monooxygenase, indicating that 1-octyne could potentially be used as a specific inhibitor to differentiate between isoprene consumption by bona fide isoprene degraders and co-oxidation of isoprene by other oxygenase-containing bacteria, such as methanotrophs, in environmental samples. The isoprene oxidation kinetics of a variety of monooxygenase-expressing bacteria were also investigated, revealing that alkene monooxygenase from Xanthobacter and soluble methane monooxygenases from Methylococcus and Methylocella, but not particulate methane monooxygenases from Methylococcus or Methylomicrobium, could co-oxidise isoprene at appreciable rates. Interestingly the ammonia monooxygenase from the nitrifier Nitrosomonas europaea could also co-oxidise isoprene at relatively high rates, suggesting that co-oxidation of isoprene by additional groups of bacteria, under the right conditions, might occur in the environment.


Assuntos
Oxigenases de Função Mista , Oxigenases , Oxigenases de Função Mista/genética , Oxigenases/genética , Oxigenases/química , Alcinos , Bactérias/genética , Metano
12.
Drug Metab Pharmacokinet ; 53: 100528, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856929

RESUMO

Forty-seven new nonsense or missense human flavin-containing monooxygenase 3 (FMO3) variants were recently identified in an updated Japanese population reference panel. Of these, 20 rare single-nucleotide substitutions resulted in moderately or severely impaired FMO3 activity. To easily identify these 20 FMO3 variants (2 stop codon mutations, 2 frameshifts, and 16 amino-acid substitutions) in the clinical setting, simple confirmation methods for impaired FMO3 variants are proposed using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) or allele-specific PCR methods. Using PCR-RFLP, FMO3 variants p.Arg51Gly, p.Met66Lys, p.Asn80Lys, p.Val151Glu, p.Val187fsTer25, p.Gly193Arg, p.Val283Ala, p.Asp286His, p.Val382Ala, and p.Phe451Leu were digested by the designated restriction enzymes and confirmed using reference cDNAs. In contrast, the FMO3 variants p.Gly39Val, p.Arg238Ter, p.Arg387Cys, p.Arg387His, p.Leu457Trp, and p.Met497Arg were not digested, whereas the wild type was digested. FMO3 variants p.Gly11Asp, p.Lys416fsTer72, p.Gln427Ter, and p.Thr453Pro were confirmed using allele-specific PCR systems. The previously identified FMO3 p.Arg500Ter variant has a relatively high frequency and was differentiated from p.Arg500Gln in two steps, i.e., enzyme restriction followed by allele-specific PCR, similar to the method for p.Arg387Cys and p.Arg387His. These systems should facilitate easy detection in the clinical setting of FMO3 variants in Japanese subjects susceptible to low drug clearance possibly caused by impaired FMO3 function.


Assuntos
Oxigenases , Humanos , Oxigenases/genética , Alelos
13.
Bioresour Technol ; 389: 129851, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37813317

RESUMO

Methanotrophs are environmentally friendly microorganisms capable of converting gas to liquid using methane monooxygenases (MMOs). In addition to methane-to-methanol conversion, MMOs catalyze the conversion of alkanes to alcohols and alkenes to epoxides. Herein, the efficacy of epoxidation by type I and II methanotrophs was investigated, and type II methanotrophs were observed to be more efficient in converting alkenes to epoxides. Subsequently, three (Epoxide hydrolase) EHs of different origins were overexpressed in the type II methanotroph Methylosinus trichosporium OB3b to produce 1,2-diols from epoxide. Methylosinus trichosporium OB3b expressing Caulobacter crescentus EH produced the highest amount of (R)-1,2-propanediol (251.5 mg/L) from 1-propene. These results demonstrate the possibility of using methanotrophs as a microbial platform for diol production and the development of a continuous bioreactor for industrial applications.


Assuntos
Methylosinus trichosporium , Oxigenases , Oxigenases/genética , Oxigenases/química , Álcoois , Metano , Alcanos , Metanol , Compostos de Epóxi
14.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511141

RESUMO

Chlamydomonas reinhardtii is a unicellular green alga that can grow heterotrophically by using acetate as a carbon source. Carotenoids are natural pigments with biological activity and color, which have functions such as antioxidant, anti-inflammatory, vision protection, etc., and have high commercial value and prospects. We transformed Chlamydomonas reinhardtii with the BKT genes from Phaffia rhodozyma (PrBKT) and Chlamydomonas reinhardtii (CrBKT) via plasmid vector, and screened out the stable transformed algal strains C18 and P1. Under the condition that the cell density of growth was not affected, the total carotenoid content of C18 and P1 was 2.13-fold and 2.20-fold higher than that of the WT, respectively. CrBKT increased the levels of ß-carotene and astaxanthin by 1.84-fold and 1.21-fold, respectively, while PrBKT increased them by 1.11-fold and 1.27-fold, respectively. Transcriptome and metabolome analysis of C18 and P1 showed that the overexpression of CrBKT only up-regulated the transcription level of BKT and LCYE (the gene of lycopene e-cyclase). However, in P1, overexpression of PrBKT also led to the up-regulation of ZDS (the gene of ζ-carotene desaturase) and CHYB (the gene of ß-carotene hydroxylase). Metabolome results showed that the relative content of canthaxanthin, an intermediate metabolite of astaxanthin synthesis in C18 and P1, decreased. The overall results indicate that there is a structural difference between CrBKT and PrBKT, and overexpression of PrBKT in Chlamydomonas reinhardtii seems to cause more genes in carotenoid pathway metabolism to be up-regulated.


Assuntos
Carotenoides , Chlamydomonas reinhardtii , Carotenoides/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Oxigenases/genética , Oxigenases/metabolismo
15.
J Nat Prod ; 86(7): 1779-1785, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37382166

RESUMO

The hydroxylated and diacetylated cyclo-l-Trp-l-Leu derivative (-)-protubonine B was isolated from a culture of Aspergillus ustus 3.3904. Genome mining led to the identification of a putative biosynthetic gene cluster coding for a bimodular nonribosomal peptide synthetase, a flavin-dependent monooxygenase, and two acetyltransferases. Heterologous expression of the pbo cluster in Aspergillus nidulans showed that it is responsible for the formation of the isolated metabolite. Gene deletion experiments and structural elucidation of the isolated intermediates confirmed the biosynthetic steps. In vitro experiments with the recombinant protein proved that the flavin-dependent oxygenase is responsible for stereospecific hydroxylation at the indole ring accompanied by pyrrolidine ring formation.


Assuntos
Aspergillus nidulans , Oxigenases , Oxigenases/genética , Hidroxilação , Aspergillus nidulans/genética , Flavinas/genética , Família Multigênica
16.
J Biosci Bioeng ; 136(3): 223-231, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37344279

RESUMO

Little is currently known about the metabolism of the industrial pollutant 2,4-dinitrophenol (DNP), particularly among gram-negative bacteria. In this study, we identified two non-contiguous genetic loci spanning 22 kb of Paraburkholderia (formerly Burkholderia) sp. strain KU-46. Additionally, we characterized four key initial genes (dnpA, dnpB, and dnpC1C2) responsible for DNP degradation, providing molecular and biochemical evidence for the degradation of DNP via the formation of 4-nitrophenol (NP), a pathway that is unique among DNP utilizing bacteria. Reverse transcription polymerase chain reaction (PCR) analysis indicated that dnpA, which encodes the initial hydride transferase, and dnpB which encodes a nitrite-eliminating enzyme, were induced by DNP and organized in an operon. Moreover, we purified DnpA and DnpB from recombinant Escherichia coli to demonstrate their effect on the transformation of DNP to NP through the formation of a hydride-Meisenheimer complex of DNP, designated as H--DNP. The function of DnpB appears new since all homologs of the DnpB sequences in the protein database are annotated as putative nitrate ABC transporter substrate-binding proteins. The gene cluster responsible for the degradation of DNP after NP formation was designated dnpC1C2DXFER, and DnpC1 and DnpC2 were functionally characterized as the FAD reductase and oxygenase components of the two-component DNP monooxygenase, respectively. By elucidating the hqdA1A2BCD gene cluster, we are now able to delineate the final degradation pathway of hydroquinone to ß-ketoadipate before it enters the tricarboxylic acid cycle.


Assuntos
2,4-Dinitrofenol , Oxigenases de Função Mista , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , 2,4-Dinitrofenol/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Clonagem Molecular , Família Multigênica , Biodegradação Ambiental
17.
Drug Metab Dispos ; 51(7): 884-891, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37041084

RESUMO

Single-nucleotide substitutions of human flavin-containing monooxygenase 3 (FMO3) identified in the whole-genome sequences of the updated Japanese population reference panel (now containing 38,000 subjects) were investigated. In this study, two stop codon mutations, two frameshifts, and 43 amino-acid-substituted FMO3 variants were identified. Among these 47 variants, one stop codon mutation, one frameshift, and 24 substituted variants were already recorded in the National Center for Biotechnology Information database. Functionally impaired FMO3 variants are known to be associated with the metabolic disorder trimethylaminuria; consequently, the enzymatic activities of the 43 substituted FMO3 variants were investigated. Twenty-seven recombinant FMO3 variants expressed in bacterial membranes had similar activities toward trimethylamine N-oxygenation (∼75%-125%) to that of wild-type FMO3 (98 minutes-1). However, six recombinant FMO3 variants (Arg51Gly, Val283Ala, Asp286His, Val382Ala, Arg387His, and Phe451Leu) had moderately decreased (∼50%) activities toward trimethylamine N-oxygenation, and 10 recombinant FMO3 variants (Gly11Asp, Gly39Val, Met66Lys, Asn80Lys, Val151Glu, Gly193Arg, Arg387Cys, Thr453Pro, Leu457Trp, and Met497Arg) showed severely decreased FMO3 catalytic activity (<10%). Because of the known deleterious effects of FMO3 C-terminal stop codons, the four truncated FMO3 variants (Val187SerfsTer25, Arg238Ter, Lys416SerfsTer72, and Gln427Ter) were suspected to be inactive with respect to trimethylamine N-oxygenation. The FMO3 p.Gly11Asp and p.Gly193Arg variants were located within the conserved sequences of flavin adenine dinucleotide (positions 9-14) and NADPH (positions 191-196) binding sites, which are important for FMO3 catalytic function. Whole-genome sequence data and kinetic analyses revealed that 20 of the 47 nonsense or missense FMO3 variants had moderately or severely impaired activity toward N-oxygenation of trimethylaminuria. SIGNIFICANCE STATEMENT: The number of single-nucleotide substitutions in human flavin-containing monooxygenase 3 (FMO3) recorded in the expanded Japanese population reference panel database was updated. One stop mutation, FMO3 p.Gln427Ter; one frameshift (p.Lys416SerfsTer72); and 19 novel amino-acid-substituted FMO3 variants were identified, along with p.Arg238Ter, p.Val187SerfsTer25, and 24 amino-acid-substituted variants already recorded with reference SNP (rs) numbers. Recombinant FMO3 Gly11Asp, Gly39Val, Met66Lys, Asn80Lys, Val151Glu, Gly193Arg, Arg387Cys, Thr453Pro, Leu457Trp, and Met497Arg variants showed severely decreased FMO3 catalytic activity, possibly associated with the trimethylaminuria.


Assuntos
Nucleotídeos , Oxigenases , Humanos , Códon de Terminação , Oxigenases/genética , Oxigenases/metabolismo
18.
Drug Metab Pharmacokinet ; 50: 100490, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36889044

RESUMO

Phenotype-gene analyses and the increasing availability of mega-databases have revealed the impaired human flavin-containing monooxygenase 3 (FMO3) variants associated with the metabolic disorder trimethylaminuria. In this study, a novel compound variant of FMO3, p.[(Val58Ile; Tyr229His)], was identified in a 1-year-old Japanese girl who had impaired FMO3 metabolic capacity (70%) in terms of urinary trimethylamine N-oxide excretion levels divided by total levels of trimethylamine and its N-oxide. One cousin in the family had the same p.[(Val58Ile); (Tyr229His)]; [(Glu158Lys; Glu308Gly)] FMO3 haplotype and had a similar FMO3 metabolic capacity (69%). In a family study, the novel p.[(Val58Ile); (Tyr229His)] compound FMO3 variant was also detected in the proband 1's mother and aunt. Another novel compound FMO3 variant p.[(Glu158Lys; Met260Lys; Glu308Gly; Ile426Thr)] was identified in a 7-year-old girl, proband 2. This novel compound FMO3 variant was inherited from her mother. Recombinant FMO3 Val58Ile; Tyr229His variant and Glu158Lys; Met260Lys; Glu308Gly; Ile426Thr variant showed moderately decreased capacities for trimethylamine N-oxygenation compared to wild-type FMO3. Analysis of trimethylaminuria phenotypes in family studies has revealed compound missense FMO3 variants that impair FMO3-mediated N-oxygenation in Japanese subjects; moreover, these variants could result in modified drug clearances.


Assuntos
População do Leste Asiático , Erros Inatos do Metabolismo , Oxigenases , Criança , Feminino , Humanos , Lactente , População do Leste Asiático/genética , Erros Inatos do Metabolismo/genética , Oxigenases/genética , Oxigenases/metabolismo
19.
J Mol Evol ; 91(2): 225-235, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869271

RESUMO

Chlorophyllide a oxygenase (CAO) is responsible for converting chlorophyll a to chlorophyll b in a two-step oxygenation reaction. CAO belongs to the family of Rieske-mononuclear iron oxygenases. Although the structure and reaction mechanism of other Rieske monooxygenases have been described, a member of plant Rieske non-heme iron-dependent monooxygenase has not been structurally characterized. The enzymes in this family usually form a trimeric structure and electrons are transferred between the non-heme iron site and the Rieske center of the adjoining subunits. CAO is supposed to form a similar structural arrangement. However, in Mamiellales such as Micromonas and Ostreococcus, CAO is encoded by two genes where non-heme iron site and Rieske cluster localize on the distinct polypeptides. It is not clear if they can form a similar structural organization to achieve the enzymatic activity. In this study, the tertiary structures of CAO from the model plant Arabidopsis thaliana and the Prasinophyte Micromonas pusilla were predicted by deep learning-based methods, followed by energy minimization and subsequent stereochemical quality assessment of the predicted models. Furthermore, the chlorophyll a binding cavity and the interaction of ferredoxin, which is the electron donor, on the surface of Micromonas CAO were predicted. The electron transfer pathway was predicted in Micromonas CAO and the overall structure of the CAO active site was conserved even though it forms a heterodimeric complex. The structures presented in this study will serve as a basis for understanding the reaction mechanism and regulation of the plant monooxygenase family to which CAO belongs.


Assuntos
Arabidopsis , Clorofilídeos , Clorófitas , Clorofilídeos/metabolismo , Clorofila A/metabolismo , Oxigenases/genética , Oxigenases/química , Oxigenases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Oxigenases de Função Mista/metabolismo , Plantas , Clorófitas/metabolismo , Ferro/metabolismo
20.
Physiol Plant ; 175(1): e13870, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36724166

RESUMO

Sweet basil, Ocimum basilicum L., is an important culinary herb grown worldwide. Although basil is green, many landraces, breeding lines, and exotic cultivars have purple stems and flowers. This anthocyanin pigmentation is unacceptable in traditional Italian basil used for Pesto sauce production. In the current study, we aimed to resolve the genetics that underlines the different colors. We used the recently published sweet basil genome to map quantitative trait loci (QTL) for flower and stem color in a bi-parental F2 population. It was found that the pigmentation is governed by a single QTL, harboring an anthocyanidin synthase (ANS) gene (EC 1.14.20.4). Further analysis revealed that the basil genome harbors two homeologous ANS genes, each carrying a loss-of-function mutation. ObANS1 carries a single base pair insertion resulting in a frameshift, and ObANS2 carries a missense mutation within the active site. In the purple-flower parent, ANS1 is functional, and ANS2 carries a nonsense mutation. The functionality of the ObANS1 active allele was validated by complementation assay in an Arabidopsis ANS mutant. Moreover, we have restored the functionality of the missense-mutated ObANS2 using site-directed activation. We found that the non-functional alleles were expressed to similar levels as the functional allele, suggesting polyploids invest futile effort in expressing non-functional genes, offsetting their advantageous redundancy. This work demonstrated the usefulness of the genomics and genetics of basil to understand the basic mechanism of metabolic traits and raise fundamental questions in polyploid plant biology.


Assuntos
Ocimum basilicum , Oxigenases/genética , Fenótipo , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...